冶金与材料工程系

本系提供材料/冶金工程领域的冶金工程硕士学位和哲学博士学位。

部门的研究兴趣包括熔融金属的热力学和动力学过程,化学冶金、金属铸造、腐蚀现象,计算机模拟凝固和其它冶金过程,电动力学的熔融金属,金属基复合材料、薄膜技术,摩擦学,磁性材料,微重力对凝固、模拟微观结构演变、铸造材料的微观力学行为、断裂力学、耐火材料、熔融盐、电子材料、薄膜和燃料电池以及相平衡的影响。设备可用于定向和高速凝固,悬浮熔化,溅射和化学气相沉积,光学和电子显微镜,x射线衍射,腐蚀,纳米压痕,电化学,材料表征设施,MEMS和热性能,和热力学性能。金属铸造工厂配备了最新的金属熔炼和铸造设备,是美国最好的教学、研究和服务于金属铸造和加工业的设施之一。合格的机械师可用于建造高度专业化的研究设备。

计算设施是全面的,从工作站、小型机和带有相关数据采集外围设备的PC单元到访问校园大型机设备。

访问部门网站

项目

同时还提供跨学科的材料科学博士学位跨学科的项目).冶金和材料工程的研究生课程允许研究生和学院之间的密切联系。

教师

本科和研究生课程副院长
  • 中提琴l . Acoff
  • 史蒂文Daniewicz
本科项目总监
  • 路加啤酒
研究生项目协调员
  • 林李
教授
  • 中提琴Acoff
  • 史蒂文Daniewicz
  • Subhadra古普塔
  • 拉玛Reddy
  • 铃木高雄
  • 格雷戈里·汤普森
  • 马克·韦弗
ACIPCO教授
  • 拉玛Reddy
副教授
  • 路加啤酒
  • Laurentiu Nastac
  • 文化产业王
助理教授
  • 格里高利Kubacki
  • Nilesh库马尔
  • 林李
  • 风燕
兼职教授
  • Mruthunjaya(周杰伦)Uddi
荣誉退休教授
  • 年纪Stefanescu
  • 加里•沃伦

课程

MTE
519
小时
3.
Solidificatn科学

概述凝固过程的原理,凝固组织的演变,偏析,缺陷和使用分析和计算工具的设计,理解和使用的凝固过程。

MTE
539
小时
3.
焊接冶金学

采用熔焊工艺的热、化学和机械方面的焊接。焊接的冶金方面,包括焊缝的组织和性能,也被涵盖。焊接研究的最新趋势的各种主题。

先决条件: MTE 380
MTE
546
小时
3.
Macroscp传输程序

层流和湍流要素;传导、对流和辐射传热;以及层流和湍流中的传质;冶金系统中传输现象的数学模型,包括熔化和精炼过程,凝固过程,填充床系统和流化床系统。

先决条件: 数学238MTE 353
先决条件(s)和并发性: MTE 271
MTE
549
小时
3.
粉末冶金

本课程为研究生选修课,旨在让冶金工程专业的学生深入了解粉末冶金技术,粉末冶金技术是制造近净形产品的主要技术之一。本课程涵盖了将粉末转化为坚固产品的所有加工步骤,从粉末制造到粉末烧结,重点是与这些过程的设计和操作相关的科学原则,以及最终产品的结构和物理性质。并以实际应用和具体工程细节为例。本课程的最终目标是使学生能够从所学的材料中选择和设计任何给定产品性能的最佳加工路线。

MTE
550
小时
3.
薄膜的等离子体处理

本课程将涵盖薄膜加工的基本技术。将讨论等离子体沉积和蚀刻技术。本课程将详细介绍等离子体处理设备的基础知识,并特别强调溅射工具。一系列的薄膜应用将被探索,以磁性,半导体,光学和医疗应用为例。在期末考试中,我们将以一个过程优化的测试用例来教授使用实验设计的过程优化的基础知识。

先决条件: PH值105或经导师同意。
MTE
556
小时
3.
先进的力学行为

主题包括基本弹性、塑性和位错理论;位错亚结构强化和固溶强化;沉淀分散强化;纤维强化复合材料;马氏体强化;粒度加强;硬化;双相微观结构等。

先决条件: MTE 455
MTE
562
小时
3.
Metallurgicl Thermodyn

热力学定律、平衡、多相体系的化学势和平衡、活性函数、化学反应、相图和电化学平衡;热力学模型与计算;以及在冶金过程中的应用。

先决条件: MTE 362
MTE
567
小时
3.
材料的强化机制

工程材料强化机理与细观力学。本课程涵盖了在工程材料中导致高机械强度的物理现象。将阐述设计高强度材料的原则。

先决条件: MTE 455或同等的:或教师的许可
MTE
579
小时
3.
先进的物理冶金学

研究生水平的基础对称,晶体学,晶体结构,晶体缺陷(包括位错理论),和原子扩散。

MTE
583
小时
3.
金属结构

研究生水平的对称,晶体学,晶体结构和晶体缺陷的处理。分析技术在材料晶体结构和织构研究中的应用。

MTE
585
小时
3.
材料在高温度

温度对材料行为和性能的影响。

MTE
587
小时
3.
腐蚀科学与工程师

腐蚀问题和故障的根本原因。重点是预测腐蚀、测量腐蚀速率以及将其与预防和材料选择相结合所需的工具和知识。

先决条件: MTE 271CH 102CH 118
MTE
591
小时
1 - 4
特殊问题

研究性的高级工作荣誉是根据所完成的工作而授予的。

MTE
592
小时
1-3
特殊问题

研究性的高级工作荣誉是根据所完成的工作而授予的。

MTE
598
小时
1 - 12
非论文研究学时

学分是基于在冶金和材料工程领域进行的非论文相关研究的工作量,其结果是在报告、论文、手稿或在会议或MTE研讨会上的正式报告中提出的确定结果。教练需要许可。不需要先决条件。

MTE
599
小时
1 - 12
论文研究

没有可用的描述

MTE
643
小时
3.
磁性材料与磁性记录

本课程提供基本磁性和各种磁性材料的知识,并介绍其应用。磁性起源、铁磁性、反铁磁性、铁磁性、软硬磁性材料、自旋电子学、磁记录、磁随机存取存储器(MRAM)、自旋转矩存储器(MRAM)、自旋晶体管和光学记录。

先决条件: MTE 271以及导师的许可。
MTE
655
小时
4
电子显微镜Matl

主题包括透射电子显微镜的基本操作原理,电子衍射原理,图像解释,以及应用于晶体材料的各种分析电子显微镜技术。

MTE
670
小时
3.
扫描电子显微镜

扫描电子显微镜的原理、结构和操作。包括成像和x射线光谱学。重点介绍在冶金工程和材料相关领域的应用和用途。

MTE
680
小时
3.
先进的相图

二元、三元和更复杂系统的高级相研究;构建和解释的实验方法。

MTE
684
小时
3.
固体工程

涵盖固体物理和量子力学的基础,以解释半导体器件的设计和操作的物理原理。第二部分涵盖半导体微器件和纳米器件的应用,如二极管、晶体管、激光器和包含量子结构的光探测器。

先决条件: MTE 271ECE 332
MTE
687
小时
3.
材料的微观结构演变

本课程将涵盖材料凝固和固态转变过程中微观组织形成和控制的数学建模和计算机模拟的基础和最先进的技术。本课程所涉及的净形铸造和钢锭重熔过程的概念和方法,可以应用于其他材料过程的建模,如焊接、沉积和热处理过程。微观结构演化的建模与仿真需要复杂的多尺度计算领域,从计算流体力学的宏观建模到细观建模再到微观建模,以及微观结构演化建模中出现的各种长度尺度的链接策略。

MTE
691
小时
1-3
特殊问题

学分的授予是根据所做的工作的数量。

MTE
698
小时
1 - 12
非论文研究时间

学分是基于在冶金和材料工程领域进行的非论文相关研究的工作量,其结果是在报告、论文、手稿或在会议或MTE研讨会上的正式报告中提出的确定结果。教练需要许可。

MTE
699
小时
1 - 12
论文研究

没有可用的描述